Public Safety Issues at the Proposed Fall River LNG Terminal

James A. Fay
77 Massachusetts Avenue, Rm. 3-258
Cambridge, MA 02139

January 12, 2004
1 Introduction

Weaver’s Cove Energy L.L.C.\(^1\) has proposed to construct and operate a liquefied natural gas (LNG) import terminal on the Taunton River in Fall River, Massachusetts.\(^2\) To reach this terminal, ocean-going LNG tankers must move through Narragansett and Mount Hope bays and enter the Taunton River, passing within 1000 feet of downtown Fall River waterfront and near commercial and residential areas. A tanker spill at any location along this route would have serious consequences for persons and property on the shore adjacent to the stricken vessel.

Natural gas, a hydrocarbon fuel, is usually piped directly from a gas well to the end consumer, never being stored locally in large amounts. When cooled to liquid form, however, as much as 50,000 tons can be stored in insulated tanks on land or aboard ship. In this form it is especially hazardous if it escapes by accident from its container, spilling onto ground or water and turning very rapidly into gaseous form, whereupon it will mix with air and then burn if ignited. By its very nature, an LNG import terminal is a hazardous industrial facility which could experience accidental fires that might harm surrounding populations and property.

To build and operate an LNG terminal at the Fall River site, Weaver’s Cove Energy must obtain permission from the Federal Energy Regulatory Commission (FERC)\(^3\), an independent agency that regulates interstate commerce in natural gas and electricity. Although primarily an economic regulator, FERC has asserted jurisdiction over the safety aspects of the LNG facilities it permits. FERC requires facility owners to meet certain technical standards in site selection and equipment design and operation before it awards the right to import LNG and to connect the facility to an interstate natural gas transmission line. FERC’s jurisdiction does not extend to safety aspects of marine tankers; they are regulated by the U.S. Coast Guard.\(^4\)

FERC’s objective in safety regulation is to limit, but not necessarily prevent, harm to persons and property outside the confines of the terminal site, should there be an accidental release of LNG at the site. The principal harmful effects are two: combustible mixtures of vapor and air, such as might be driven by the wind blowing over an evaporating pool of spilled LNG, and thermal radiation from a fire burning above a liquid spill on the site. The types of spills to be considered are also twofold: a

\(^1\)Weaver’s Cove Energy L.L.C. (www.weaverscoveenergy.com) is owned by Poten and Partners (www.poten.com).
\(^4\)The safety of the natural gas pipeline connecting the terminal to the interstate transmission line is regulated by the Office of Pipeline Safety of the U.S. Department of Transportation, but the FERC permit for the LNG terminal confers on the terminal owner the right to seek seizure of private land to construct the connecting pipeline, if necessary.
spill from transfer piping connecting the storage tanks and the regasification or unloading facilities, and the failure of the primary storage tank enclosure.

Limiting these effects at a terminal requires the construction of impounding areas surrounding potential spill sources so as to collect the spilled liquid and slow its vaporization or burning rate. If the spills are sufficiently small, harmful effects will not extend beyond the site line. For transfer line spills, the LNG is collected in a central impounding area. For storage tank spills, the inner storage container is surrounded by a secondary containment tank of slightly larger size, as shown in Figure 2, which can contain all the LNG that might spill from the inner primary container.

The potential for harmful effects to humans from a given spill decreases with distance from the spill site. The harmful effect of ignitable natural gas vapor is measured by the flammability distance, a distance down wind from the spill site at which the vapor has been so diluted by mixing with air that it cannot be ignited. Any ignition at a closer distance can propagate a flame, but that flame will not propagate beyond the flammability distance. If the latter distance lies within the site boundary, no flame can extend beyond that boundary.

Thermal radiation from on-site LNG fires fed by an evaporating pool of spilled LNG can cause first, second or third degree burns to the skin of humans exposed to the radiation, depending upon the intensity of radiation. For a given fire, this intensity decreases with distance from the fire. The least intense thermal radiation that FERC rules allow humans outside the site boundary to be exposed to is 5 kilowatts per square meter, an amount that produces second degree burns after only thirty seconds exposure.6

The FERC requirements for the proposed Fall River terminal can be estimated from the Final Environmental Impact Statement for the Hackberry LNG project in Louisiana.7 This project, consisting of three storage tanks and two unloading piers, employs the technology likely to be used at the Fall River facility. Values from this report of the flammability and thermal radiation distances

---

6More intense and thereby more damaging exposure is permitted depending upon land use characteristics at the site boundary.

Table 1: Flammability and radiation distances for FERC-defined spills

<table>
<thead>
<tr>
<th>Spill source</th>
<th>Size (ton)</th>
<th>Flammability (ft)</th>
<th>5 kW/m² Radiation (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer piping</td>
<td>840</td>
<td>770</td>
<td>320</td>
</tr>
<tr>
<td>Storage tank (primary)</td>
<td>74,000</td>
<td></td>
<td>929</td>
</tr>
</tbody>
</table>

For a transfer line spill, and the thermal radiation distance for a primary containment spill, are listed in Table 1, together with the amounts of the respective spill volumes. It would appear that for these FERC-defined spills neither radiation nor flammability will exceed the FERC limits beyond the site boundary.8

3 Risks that FERC ignores

There are several important public safety risks that are not considered in the FERC regulations discussed above.

1. First of all, FERC allows damaging thermal radiation beyond the site boundary as long as its level is below 5 kilowatts per square meter. However, it is not until the thermal radiation intensity falls below 1.6 kilowatts per square meter that there is no damage to exposed humans. A safe radiation distance for fires would be that for which the thermal radiation level does not exceed 1.6 kilowatts per square meter. Distances at which the radiation exceeds this value would lie within a thermal radiation danger zone.

2. In considering a spill from the primary LNG tank into the secondary containment vessel, FERC regulations ignore the possibility that this spill may not be accompanied by a fire, but instead might evolve LNG vapor that could be ignited beyond the site boundary. The flammability distance for this type of accident should not extend beyond the site boundary.

3. Most of all, FERC’s regulations ignore the greatest risks of all, that foreign or domestic terrorists could destroy the storage tank primary and secondary containment systems, or the LNG tanker cargo hold, allowing LNG to spill unhindered onto ground or water, where it would most likely burn. Because the lateral extent of such spills would be so much greater than those considered in the FERC regulations, it is to be expected that their harmful effects would exist very far beyond the site boundaries.

To show how public safety can be adversely affected by credible spills that have been overlooked by FERC, we have extended Table 1 to include the effects listed above. This expanded assessment is listed in Table 2. Two additional spills are considered, those from the secondary storage tank containment system and a single hold of a marine tanker (last two rows of Table 2). For these and the previous spills of Table 1, the safe radiation distance defining the outer boundary of the thermal

---

Table 2: Flammability and radiation distances for all credible spills

<table>
<thead>
<tr>
<th>Spill source</th>
<th>Size (ton)</th>
<th>Flammability (ft)</th>
<th>1.6 kW/m² Radiation (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer piping</td>
<td>840</td>
<td>Danger zone 770</td>
<td>Danger zone 1230</td>
</tr>
<tr>
<td>Storage tank (primary)</td>
<td>74,000</td>
<td>9500</td>
<td>1490</td>
</tr>
<tr>
<td>Storage tank (secondary)</td>
<td>74,000</td>
<td></td>
<td>9630</td>
</tr>
<tr>
<td>Tanker hold</td>
<td>6,000</td>
<td></td>
<td>5780</td>
</tr>
</tbody>
</table>

Radiation danger zone, mentioned in item 1 above, has been calculated for all spills (last column of Table 2). Also, the flammability distance for the FERC primary containment failure accident is shown in the flammability column.

3.1 Thermal danger zones

The thermal radiation danger zones for the credible spills listed in Table 2 are shown in Figure 2. All of these extend beyond the site boundaries, especially so for the tanker and secondary tank spill with fire. But even the FERC spills with fire from transfer piping and primary containment send damaging radiation beyond the site boundaries. Altogether, about 5 square miles of Fall River, and about 4 square miles of Somerset are at risk for damage to humans from on-site spills at the proposed LNG terminal.

3.2 Tanker danger zones

Spills from a fully loaded LNG tanker can occur not only at the unloading dock, as shown in Figure 2, but also at any point along the ship channel while approaching the terminal. Figure 3 shows the proposed path to be followed by an LNG tanker heading for the terminal. Thermal radiation danger zones for spills at two locations are shown: the unloading pier and a point near the waterfront in downtown Fall River. At either location, the danger zone encloses about 2 square miles of land in Fall River. But the entire area in Fall River within which this danger zone could be located is about 8 square miles.

3.3 Flammable vapor danger zones

The flammable vapor danger zone from a primary tank spill (without fire) is shown in Figure 4. For a given spill, the flammable vapor plume would extend downwind to the distance indicated, but would enclose an area smaller than the 5 square miles of Fall River within the flammable vapor danger zone.

The yellow circle in Figure 4 depicts the flammability danger zone for a primary tank spill without fire. For any such spill, the flammable vapor plume or cloud would extend from the tank in
Figure 2: The thermal radiation danger zones for spills listed in Table 2. Red circles are distances to radiation intensities of 1.6 kW/m² for a spill with fire. Largest circle is for failure of secondary tank containment; next smaller for tanker hold contents; smallest for loss of primary containment.
Figure 3: The path of a tanker approaching the proposed LNG terminals (yellow dashed line) and the radiation danger zones for a spill at two locations along this path.
the wind direction, encompassing an area smaller than the 5 square miles of Fall River within the flammable vapor danger zone. Winds from the southwest, and clockwise to the northeast, would send the vapor over land areas of Fall River.

The spills described in Tables 1 and 2 do not include spills without fire from the secondary containment containment of the storage tank and the LNG tanker. One estimate for such spills, almost certainly low, gives flammability distances of 3.25 and 2.5 miles, respectively.9 If plotted as in Figure 3, these radii would encompass additional areas on Fall River.

4 Conclusions

1. The federal safety requirements for the proposed Fall River LNG terminal will not prevent harm to humans outside the site boundary for the spill scenarios that FERC considers.

2. For all credible spills, including terrorist attacks on the storage tank and LNG tanker, the danger zone for humans extends nearly two miles from the terminal site, encompassing 5 square miles of land in Fall River.

3. For a tanker spill anywhere along the route leading to the LNG terminal, the thermal radiation danger zone for humans extends 1.1 miles from the tanker route, encompassing 2 square miles of land in Fall River. The land area of Fall River within which such a danger zone can be experienced comprises 8 square miles.

4. For a primary containment tank rupture without a fire, a flammable vapor danger zone would extend 1.8 miles from the tank location, comprising 5 square miles of Fall River.

---

Figure 4: The flammable vapor danger zones for on-site spills without fire. The large circle is for a loss of primary containment; the small, for a transfer piping spill.